97% 的开发者在使用 Claude Code 时会遭遇失败。原因通常不是因为 AI 不够聪明,而是陷入了“上下文窗口死亡螺旋”——实现细节挤占了架构规划,导致智能体“失忆”。

本教程将教你如何通过四层编排架构(4-Layer Orchestra Architecture),从零构建一个能够处理复杂任务、保持上下文清晰且高效协作的智能体系统。


核心理念:为什么需要编排?

单智能体模式在处理超过 10-15 个文件的修改时通常会崩溃。成功的关键在于让主智能体(编排器)保持纯粹的编排模式,绝不触碰代码实现

我们将通过四个层级来构建这个系统:

  1. 编排层:分解任务。
  2. 上下文管理层:隔离状态。
  3. 执行层:专家分工。
  4. 验证层:集成检查。

第 1 步:创建编排器智能体 (The Orchestrator)

这是系统的“大脑”。它的唯一职责是分解任务和协调专家,绝对不能写代码。这样可以确保架构计划始终保留在其上下文窗口的最前端。

配置文件:.claude/agents/orchestrator.md

  1. # .claude/agents/orchestrator.md
  2. ---
  3. name: orchestrator
  4. description: MUST BE USED for all multi-file operations. Decomposes tasks and coordinates specialist agents.
  5. ---
  6. You are a pure orchestration agent. You NEVER write code.
  7. Your responsibilities:
  8. 1. Analyze incoming requests for complexity and dependencies
  9. 2. Decompose into atomic, parallelizable tasks
  10. 3. Assign tasks to appropriate specialists
  11. 4. Monitor progress and handle inter-agent dependencies
  12. 5. Synthesize results into coherent deliverables
  13. When you receive a request:
  14. - Map all file dependencies
  15. - Identify parallelization opportunities
  16. - Create explicit task boundaries
  17. - Define success criteria for each subtask

如何使用: 初始化时,只给编排器最小的项目上下文:

  1. # Initialize orchestrator with project context
  2. claude --agent orchestrator --context-mode minimal \
  3. "Implement WebSocket real-time notifications with Redis pub/sub"

第 2 步:构建上下文管理系统 (Context Management)

为了防止不同智能体之间的上下文污染,我们需要一个“枢纽”来管理状态。每个智能体只获取它需要的上下文,从而节省 60-70% 的 Token。

实现代码:context_manager.py

  1. # context_manager.py
  2. class AgentContextHub:
  3. def __init__(self):
  4. self.project_state = {
  5. 'architecture': {}, # High-level decisions
  6. 'dependencies': {}, # Inter-agent dependencies
  7. 'completions': {}, # Finished tasks
  8. 'interfaces': {}, # Contract definitions
  9. 'conflicts': [] # Detected inconsistencies
  10. }
  11. def register_task(self, agent_id, task_spec):
  12. """Register task without implementation details"""
  13. return {
  14. 'task_id': self.generate_task_id(),
  15. 'dependencies': self.extract_dependencies(task_spec),
  16. 'interfaces': self.extract_interfaces(task_spec),
  17. 'context_window': self.allocate_context_window(agent_id)
  18. }
  19. def handoff_protocol(self, from_agent, to_agent, artifacts):
  20. """Structured handoff maintaining context boundaries"""
  21. return {
  22. 'interfaces': self.project_state['interfaces'],
  23. 'relevant_completions': self.filter_completions(to_agent),
  24. 'artifacts': self.validate_artifacts(artifacts),
  25. 'constraints': self.get_agent_constraints(to_agent)
  26. }

第 3 步:部署专业执行智能体 (Specialized Execution Agents)

专家智能体只负责特定领域的实现(如后端、前端、数据库)。它们仅加载特定技能和上下文。

示例配置:后端专家 (.claude/agents/backend-specialist.md)

  1. # .claude/agents/backend-specialist.md
  2. ---
  3. name: backend-specialist
  4. description: Use PROACTIVELY for all API, database, and server-side implementations
  5. ---
  6. You are a backend implementation specialist.
  7. Technical constraints:
  8. - Node.js 20+ with TypeScript
  9. - Express.js for routing
  10. - PostgreSQL with Prisma ORM
  11. - Error-first callback pattern
  12. - Async/await for all database operations
  13. You receive task specifications from the orchestrator. You return ONLY:
  14. 1. Implemented code
  15. 2. Interface contracts
  16. 3. Test requirements
  17. 4. Dependencies needed

如何调用: 专家智能体通过上下文枢纽获取精简后的任务信息:

  1. # Specialist receives minimal context
  2. claude --agent backend-specialist \
  3. --context-from hub:interfaces \
  4. --task "Implement WebSocket connection handler with heartbeat"

第 4 步:集成验证层 (Integration Validation)

在并行开发中,不同智能体的代码可能会发生冲突。集成验证层用于防止类型不匹配、接口冲突或竞争条件。

实现代码:integration_validator.py

  1. # integration_validator.py
  2. class IntegrationValidator:
  3. def validate_interfaces(self, implementations):
  4. """Ensure all interfaces align across agents"""
  5. mismatches = []
  6. for impl in implementations:
  7. # Check type signatures
  8. if not self.validate_types(impl['types'], self.canonical_types):
  9. mismatches.append({
  10. 'agent': impl['agent_id'],
  11. 'type': 'type_mismatch',
  12. 'details': self.diff_types(impl['types'])
  13. })
  14. # Validate API contracts
  15. if not self.validate_contracts(impl['contracts']):
  16. mismatches.append({
  17. 'agent': impl['agent_id'],
  18. 'type': 'contract_violation',
  19. 'fix': self.suggest_contract_fix(impl)
  20. })
  21. return self.coordinate_fixes(mismatches) if mismatches else None
  22. def detect_race_conditions(self, parallel_implementations):
  23. """Identify potential race conditions in parallel code"""
  24. # Analyzes resource access patterns
  25. # Detects missing synchronization
  26. # Suggests mutex/semaphore placement
  27. pass

进阶:高级编排模式

为了让系统更加健壮,你可以实施以下几种高级模式。

模式 1:波次部署 (Wave-Based Deployment)

将智能体分批次部署,在保持并行性的同时管理上下文预算。

  1. class WaveOrchestrator:
  2. def deploy_waves(self, tasks):
  3. waves = []
  4. current_wave = []
  5. context_budget = 0
  6. for task in tasks:
  7. estimated_context = self.estimate_context_usage(task)
  8. if context_budget + estimated_context > self.MAX_CONTEXT:
  9. waves.append(current_wave)
  10. current_wave = [task]
  11. context_budget = estimated_context
  12. else:
  13. current_wave.append(task)
  14. context_budget += estimated_context
  15. if current_wave:
  16. waves.append(current_wave)
  17. return waves
  18. def execute_waves(self, waves):
  19. for i, wave in enumerate(waves):
  20. print(f"Deploying wave {i+1}/{len(waves)}")
  21. # Parallel execution within wave
  22. results = parallel_execute(wave)
  23. # Synthesis between waves
  24. self.synthesize_results(results)
  25. # Context cleanup before next wave
  26. self.cleanup_transient_context()

模式 2:渐进式上下文摘要 (Progressive Context Summarization)

对于长时间运行的会话,自动压缩旧的上下文信息。

  1. class ContextCompressor:
  2. def compress_conversation(self, messages, threshold=0.8):
  3. """Compress when approaching context limit"""
  4. if self.context_usage() > threshold:
  5. # Identify compressible sections
  6. sections = self.identify_sections(messages)
  7. for section in sections:
  8. if section['type'] == 'implementation_detail':
  9. # Compress to interface only
  10. compressed = self.extract_interface(section)
  11. elif section['type'] == 'debugging_session':
  12. # Compress to final fix only
  13. compressed = self.extract_solution(section)
  14. elif section['type'] == 'exploration':
  15. # Compress to decisions only
  16. compressed = self.extract_decisions(section)
  17. section.replace_with(compressed)
  18. return messages

模式 3:智能体生命周期管理 (Agent Lifecycle Management)

明确定义何时生成、继续或终止一个智能体,防止资源浪费和死循环。

配置文件:.claude/commands/agent-lifecycle.md

  1. # .claude/commands/agent-lifecycle.md
  2. ---
  3. name: agent-lifecycle
  4. description: Manage agent spawning and termination
  5. ---
  6. Agent lifecycle rules:
  7. SPAWN conditions:
  8. - Task complexity exceeds single-agent threshold (>5 files)
  9. - Parallel work possible (independent modules)
  10. - Specialization needed (specific expertise required)
  11. CONTINUE conditions:
  12. - Agent maintaining <70% context usage
  13. - Making consistent progress (no loops detected)
  14. - No architectural drift from specifications
  15. TERMINATE conditions:
  16. - Three consecutive incorrect suggestions
  17. - Context usage >85% with degrading quality
  18. - Circular modifications detected (ABA pattern)
  19. - Task complete or blocked
  20. Termination protocol:
  21. 1. Save agent state to context hub
  22. 2. Extract completed work artifacts
  23. 3. Log termination reason
  24. 4. Reassign incomplete tasks if needed

模式 4:上下文移交协议 (The Context Handoff Protocol)

结构化的移交协议确保信息在智能体之间传递时不丢失。

  1. {
  2. "handoff_protocol": {
  3. "from_agent": "backend-specialist",
  4. "to_agent": "frontend-specialist",
  5. "timestamp": "2024-11-14T10:30:00Z",
  6. "artifacts": {
  7. "interfaces": {
  8. "websocket_events": ["connection", "message", "disconnect"],
  9. "message_types": ["operation", "presence", "acknowledgment"],
  10. "api_endpoints": {
  11. "GET /documents/:id": "Returns document with operations",
  12. "POST /documents/:id/operations": "Applies new operation"
  13. }
  14. },
  15. "implementation_notes": {
  16. "critical": "Operations must be applied in timestamp order",
  17. "optimization": "Batch operations every 100ms",
  18. "limitation": "Max 1000 operations per document in memory"
  19. },
  20. "dependencies": ["ws@8.0.0", "uuid@9.0.0"],
  21. "test_requirements": [
  22. "Concurrent operation ordering",
  23. "Reconnection with state recovery",
  24. "Operation compression for large documents"
  25. ]
  26. },
  27. "next_agent_context": {
  28. "focus": "Build React components consuming these WebSocket events",
  29. "constraints": "Maintain optimistic UI updates with rollback capability",
  30. "available_context_budget": 8500
  31. }
  32. }
  33. }

总结:从现在开始行动

这种编排架构虽然前期投入(Token 和设置)稍高,但能换来 100% 的任务完成率和零架构偏离。

你的行动计划:

  1. 今天:创建 .claude/agents/orchestrator.md,定义你的编排器。
  2. 本周:添加第一个专家智能体(推荐从 test-specialist 开始,风险最低)。
  3. 下周:实现简单的上下文枢纽逻辑。

像指挥家一样指挥你的 AI,而不是像对待实习生一样盯着它们。这将彻底改变你的开发效率。